il n’y a pas de formule du monde

 

La théorie de la relativité générale ne s’applique qu’à l’infiniment grand. La théorie des quanta s’applique exclusivement à l’infiniment petit. Il y a une « particularité », il y a un moment unique où l’infiniment petit et l’infiniment grand sont inextricablement mêlés : c’est le big bang, pointe d’épingle minuscule, poussière imperceptible, portée à une température et à une densité si énormes qu’elles sont difficiles à imaginer. Pour en savoir plus sur cette explosion originelle et paradoxale, une théorie unitaire, une sorte de théorie quantique de la gravitation, était nécessaire. Tout au long de la fin de sa vie, Albert Einstein s’efforça, mais en vain, d’élaborer une telle théorie unifiée qui engloberait les lois de la gravitation et de l’électrodynamique.

Après la Seconde Guerre, Werner Heisenberg proposa à son tour, à l’aide de la théorie des quanta, et de nouveau sans succès, une théorie unitaire de la matière. Tout récemment, la théorie des cordes et des supercordes, la cosmologie de Kaluza-Klein ou la redoutable théorie M – M comme magie, comme mystère, comme mythe ? – ou d’autres théories encore qui tablent sur un univers ou sur une infinité d’univers comportant, au lieu de nos trois dimensions d’espace plus la dimension du temps, jusqu’à une douzaine de dimensions d’espace-temps cachées et enroulées sur elles-mêmes, n’ont pas encore passé avec succès l’épreuve de la vérification expérimentale. Chaque fois, la tentative d’aboutir à une théorie unifiée, à une formule globale du monde, s’est soldée par un échec.

Dans sa Brève histoire du tempsqui a connu un succès planétaire, le physicien Stephen Hawking, paralysé de la tête aux pieds, atteint d’une maladie irréversible qui lui interdit de communiquer autrement que par ordinateur, appelait de ses vœux une grande théorie unifiée qui nous permettrait de « connaître la pensée de Dieu ». Cette « théorie du tout », Hawking lui-même reconnaissait qu’elle ne serait pas capable de répondre à la question : « Pourquoi y a-t-il quelque chose au lieu de rien ? » Toute théorie unifiée possible « ne sera jamais qu’un ensemble de règles et d’équations. Qu’est-ce qui insuffle le feu dans ces équations et produit un univers qu’elles pourront décrire ? L’attitude habituelle de la science – construire un modèle mathématique – ne peut pas répondre à ces questions ».

Même cette théorie unifiée qui ne suffirait pas à expliquer le surgissement de l’univers, Hawking a abandonné, il y a à peine cinq ou six ans, tout espoir de pouvoir l’élaborer. Quelques années avant la Seconde Guerre, un mathématicien autrichien du nom de Gödel, ami proche d’Einstein, avait énoncé le théorème peut-être le plus important du XXe siècle. D’après ce théorème, il y a toujours dans tout système mathématique « des formules qui ne peuvent être ni démontrées ni prouvées ». « Nous ne sommes pas des anges qui regardent l’univers de l’extérieur, enchaîne Stephen Hawking. Bien au contraire, nos modèles et nous-mêmes sommes des parties de l’univers que nous décrivons. Une théorie physique se réfère à elle-même comme dans le théorème de Gödel. On peut donc s’attendre à ce qu’elle soit ou contradictoire ou incomplète. »

Le monde inépuisable dont nous faisons partie, aucun ouvrage de génie, aucune théorie unifiée, aucune formule de l’univers ne sera jamais capable d’en livrer le secret dans sa totalité. Tout ce que les hommes peuvent faire, c’est de bricoler dans le temps avant de disparaître à jamais.

 

c'est une chose étrange à la fin que le monde
cover.xhtml
book_0000.xhtml
book_0001.xhtml
book_0002.xhtml
book_0003.xhtml
book_0004.xhtml
book_0005.xhtml
book_0006.xhtml
book_0007.xhtml
book_0008.xhtml
book_0009.xhtml
book_0010.xhtml
book_0011.xhtml
book_0012.xhtml
book_0013.xhtml
book_0014.xhtml
book_0015.xhtml
book_0016.xhtml
book_0017.xhtml
book_0018.xhtml
book_0019.xhtml
book_0020.xhtml
book_0021.xhtml
book_0022.xhtml
book_0023.xhtml
book_0024.xhtml
book_0025.xhtml
book_0026.xhtml
book_0027.xhtml
book_0028.xhtml
book_0029.xhtml
book_0030.xhtml
book_0031.xhtml
book_0032.xhtml
book_0033.xhtml
book_0034.xhtml
book_0035.xhtml
book_0036.xhtml
book_0037.xhtml
book_0038.xhtml
book_0039.xhtml
book_0040.xhtml
book_0041.xhtml
book_0042.xhtml
book_0043.xhtml
book_0044.xhtml
book_0045.xhtml
book_0046.xhtml
book_0047.xhtml
book_0048.xhtml
book_0049.xhtml
book_0050.xhtml
book_0051.xhtml
book_0052.xhtml
book_0053.xhtml
book_0054.xhtml
book_0055.xhtml
book_0056.xhtml
book_0057.xhtml
book_0058.xhtml
book_0059.xhtml
book_0060.xhtml
book_0061.xhtml
book_0062.xhtml
book_0063.xhtml
book_0064.xhtml
book_0065.xhtml
book_0066.xhtml
book_0067.xhtml
book_0068.xhtml
book_0069.xhtml
book_0070.xhtml
book_0071.xhtml
book_0072.xhtml
book_0073.xhtml
book_0074.xhtml
book_0075.xhtml
book_0076.xhtml
book_0077.xhtml
book_0078.xhtml
book_0079.xhtml
book_0080.xhtml
book_0081.xhtml
book_0082.xhtml
book_0083.xhtml
book_0084.xhtml
book_0085.xhtml
book_0086.xhtml
book_0087.xhtml
book_0088.xhtml
book_0089.xhtml
book_0090.xhtml
book_0091.xhtml
book_0092.xhtml
book_0093.xhtml
book_0094.xhtml
book_0095.xhtml
book_0096.xhtml
book_0097.xhtml
book_0098.xhtml
book_0099.xhtml
book_0100.xhtml
book_0101.xhtml
book_0102.xhtml
book_0103.xhtml
book_0104.xhtml
book_0105.xhtml
book_0106.xhtml
book_0107.xhtml
book_0108.xhtml
book_0109.xhtml
book_0110.xhtml
book_0111.xhtml
book_0112.xhtml
book_0113.xhtml
book_0114.xhtml
book_0115.xhtml
book_0116.xhtml
book_0117.xhtml
book_0118.xhtml
book_0119.xhtml
book_0120.xhtml
book_0121.xhtml
book_0122.xhtml
book_0123.xhtml
book_0124.xhtml
book_0125.xhtml
book_0126.xhtml
book_0127.xhtml
book_0128.xhtml
book_0129.xhtml
book_0130.xhtml
book_0131.xhtml
book_0132.xhtml
book_0133.xhtml
book_0134.xhtml
book_0135.xhtml
book_0136.xhtml
book_0137.xhtml
book_0138.xhtml
book_0139.xhtml
book_0140.xhtml
book_0141.xhtml
book_0142.xhtml
book_0143.xhtml
book_0144.xhtml
book_0145.xhtml
book_0146.xhtml
book_0147.xhtml